Direct Proof - Rational Numbers

Lecture 14
Section 4.2

Robb T. Koether
Hampden-Sydney College

Thu, Feb 6, 2014
(9) Rational Numbers

- The Harmonic Mean
(2) Special Rational Numbers
(3) Intersecting Lines
(4) Assignment

Outline

(9) Rational Numbers

- The Harmonic Mean
(2) Special Rational Numbers
(3) Intersecting Lines

4 Assignment

Rational Numbers

Definition (Rational Number)

A rational number is a real number that can be represented as the quotient of two integers. That is, a real number r is rational if

$$
\exists a, b \in \mathbb{Z}, r=\frac{a}{b}
$$

Properties of Rational Numbers

Theorem

The sum of two rational numbers is a rational number.

Properties of Rational Numbers

Proof.

- Let r and s be rational numbers.
- Then there exist integers a, b, c, and d such that $r=\frac{a}{b}$ and $s=\frac{c}{d}$.
- Then

$$
\begin{aligned}
r+s & =\frac{a}{b}+\frac{c}{d} \\
& =\frac{a d}{b d}+\frac{b c}{b d} \\
& =\frac{a d+b c}{b d}
\end{aligned}
$$

Properties of Rational Numbers

Proof.

- $a d+b c$ and $b d$ are integers.
- Furthermore, $b d \neq 0$ because $b \neq 0$ and $d \neq 0$.
- Therefore, $r+s$ is a rational number.

Outline

(9) Rational Numbers

- The Harmonic Mean

(2) Special Rational Numbers

(3) Intersecting Lines
(4) Assignment

Properties of Rational Numbers

Definition (Harmonic Mean)

Let x and y be two nonzero real numbers with $y \neq-x$. The harmonic mean $h(x, y)$ of x and y is the reciprocal of the average of their reciprocals. That is,

$$
h(x, y)=\frac{1}{\left(\frac{\frac{1}{x}+\frac{1}{y}}{2}\right)}
$$

- Note that

$$
\frac{1}{h(x, y)}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)
$$

and that

$$
h(x, y)=\frac{2 x y}{x+y}
$$

Properties of Rational Numbers

Theorem

The harmonic mean of rational numbers, when defined, is a rational number.

Properties of Rational Numbers

Proof.

- Let r and s be nonzero rational numbers.
- Let $r=\frac{a}{b}$ and $s=\frac{c}{d}$ for some integers a, b, c, and d.
- Then a, b, c, and d are nonzero.

$$
\begin{aligned}
h(r, s) & =\frac{1}{\left(\frac{\frac{1}{r}+\frac{1}{s}}{2}\right)}=\frac{2 r s}{r+s} \\
& =\frac{2 \cdot \frac{a}{b} \cdot \frac{c}{d}}{\frac{a}{b}+\frac{c}{d}}=\frac{2 a c}{a d+b c}
\end{aligned}
$$

- And $\frac{2 a c}{a d+b c}$ is a rational number provided $a d+b c \neq 0$.

Properties of Rational Numbers

Theorem
Let $0 . d_{1} d_{2} d_{3} \ldots$ be the decimal representation of a real number a. If the representation is repeating, that is, if there exists an integer $n \geq 1$ and an integer $m \geq 1$ such that

$$
d_{n+i}=d_{n+m+i}
$$

for all $i \geq 0$, then a is rational.

- How would we prove it?
- Is the converse true?

Outline

(1) Rational Numbers

- The Harmonic Mean
(2) Special Rational Numbers
(3) Intersecting Lines
(4) Assignment

Even Over Odd Rationals

Definition (Even Over Odd Rational)
A rational number $\frac{a}{b}$ is called even over odd if a is even and b is odd.

Theorem

Let r and s be even-over-odd rational numbers. Then $r+s, r-s$, and rs are also even-over-odd rational numbers.

- Is $\frac{r}{s}$ necessarily even over odd?
- Is it possible that $\frac{r}{x}$ is even over odd?

Odd Over Even Rationals

Definition (Odd Over Even Rational)

A rational number $\frac{a}{b}$ is called odd over even if a is odd and b is even.

- If r and s are odd-over-even rational numbers, then what can we say about $r+s, r-s, r s$, and $\frac{r}{s}$?

Outline

(1) Rational Numbers
 - The Harmonic Mean

(2) Special Rational Numbers

(3) Intersecting Lines

4) Assignment

Intersecting Lines

Theorem

If two lines have distinct rational slopes and rational y-intercepts, then they intersect at a point with rational coordinates.

Solve the System

Proof.

- Let the lines be

$$
\begin{aligned}
& L_{1}: y=m_{1} x+b_{1} \\
& L_{2}: y=m_{2} x+b_{2}
\end{aligned}
$$

where m_{1}, m_{2}, b_{1}, and b_{2} are rational and $m_{1} \neq m_{2}$.

- Solve the equations simultaneously to find the point of intersection.

Solve the System

Proof.

- We get

$$
\begin{aligned}
x & =\frac{b_{2}-b_{1}}{m_{1}-m_{2}} \\
y & =\frac{b_{1} m_{2}-b_{2} m_{1}}{m_{1}-m_{2}}
\end{aligned}
$$

- Justify the claim that these are rational numbers.

Outline

(1) Rational Numbers

- The Harmonic Mean
(2) Special Rational Numbers
(3) Intersecting Lines

4 Assignment

Assignment

Assignment

- Read Section 4.2, pages 163-168.
- Exercises 5, 7, 8, 14, 16, 22, 27, 28, 30, 33, page 168.

